
Control of 2-degree of freedom robot using
Advantage-Actor-Critic method

 1
 2

Nazerke Sandibay 3
Department of Robotics and Mechatronics 4

Nazarbayev University 5
nazerke.sandibay@nu.edu.kz 6

 7
 8
 9

Abstract 10

The project work aims to find the optimal trajectory of 2-degree of freedom 11
robot in a space with obstacles using Advantage-Actor-Critic Algorithm. 12
The learning environment of the robot was constructed and the performance 13
of a reinforcement learning algorithm concluded to be safe and optima for a 14
robot but too cautious. 15

 16

1 Problem formulation 17

The purpose of the project is to find the best trajectory between two positions of 2 degrees 18
of freedom robot similar to a SCARA robot in the environment with obstacles. It can be done 19
using motion planning algorithms such as A* and Reinforcement learning techniques. 20

The latter may be faster and universal compared to the former. Therefore, Advantage-Actor-21
Critic Reinforcement learning algorithm was written and tested ina simple environment with 22
obstacles with a constant position. For the sake of convenience Open-Ai gym environment of 23
the robot was created to work with RL baselines. Later it can be applied to a changing 24
environment. 25

 26

Figure 1. SCARA robot. 27
 28

mailto:nazerke.sandibay@nu.edu.kz

1 .1 Ta sk descr ipt io n 29

Our goal is to pick up an object in space at a specified position and place it to another 30
position using an end-effector electromagnet that can be activated or deactivated at will. The 31
robot's vertical movement can occur at any time without affecting obstacle collisions: as a 32
result, the vertical movement is planned independently and we only need to determine the 33
motion of the manipulator in the horizontal plane.[1] The robot can thus be modeled as a 34
simple 2R planar manipulator. The robot base (i.e., where link 1 is fixed to the ground) is at 35
(x,y) = (0,0). The links have lengths `1 = 0.5 m and `2 = 0.4 m, respectively. The first 36
obstacle to be avoided is a wall, which runs parallel to the x -axis, keeping a distance of 0 m 37
from it. Also, there are two other obstacles: these have a fixed position and have been 38
conservatively represented by two circles, both with radius B = 0.2 m,and with center at 39
(xc1,yc1) = (−0.6,0.7) mand (xc2,yc2) = (0.6,0.7) m, respectively. 40

The thickness of the links can be neglected, as the sizes of all obstacles have been already 41
augmented to account for the robot link thickness as well. The angular motion of link 1 is 42
only limited by the presence of the wall (so no additional constraints have to be inserted), 43
while link 2 can only move within a range of ±90◦ with respect to the configuration in which 44
it is perfectly aligned with link 1 (i.e., θ2 ∈ [−π/2,π/2]). Our task is to plan a motion from 45
any given initial configuration (where the object is picked) to any final configura tion (where 46
the object is placed), chosen in the free space, avoiding any collision during the robot 47
motion. 48

 49

2 Background 50

 51

2 .1 Heur i s t i c func t io n 52
 53
Reward functions play a crucial role in reinforcement learning. In my case reward was 54

chosen to be proportional to negative of heuristic. Heuristic function approximates the 55

distance between two objects. It was taken as 20 plus negative heuristic. It means that the 56

reward of the states that are close to the goal is higher. For example, the heuristic of the far 57

element is 15, while the heuristic of the closer element is 10. Consequently, their reward will 58

be 5 (or 20-15=5) and 10(or 20-10=10). A reward of the closest element is higher, therefore 59

the algorithm will try to move closer to the goal to maximize reward. 60

 61

 62

3 Environment 63

Two degrees of freedom of the robot corresponds to two agents. So, the environment is 64
multiagent with agents that depend on each other. Therefore, outputs of the algorithm should 65
be two angles (theta 1 and theta 2) corresponding to the angles of the arms with respect to 66
the neutral axis. 67

 68

Figure 2. 2DOF robot (view from top) 69

 70

3 .1 Free spa ce a nd o bsta c le spa ce 71

 72

Figure 3. Free&Obstacle space of the environment 73

First of all, we have to represent the robot configuration space, the configuration being q = 74
(θ1,θ2). A grid of points has to be defined on both angles in a range of 2π. It is better to 75
choose the intervals for the two angles such that the free space is connected: for example, 76
rather than representing the range of both angles from 0 to 2π, one could do it between−3π/4 77
and 5π/4. From a visual inspection, we notice that link 1 can collide with the wall, but not 78
with any of the circular obstacles: as a consequence, there is no need to define spheres 79
around link 1. 80

 81

3 .2 Crea te a g y m env i ro n ment 82
 83
Gym environment with properties and functions similar to the OpenAI gym environment was 84

created. 85

 86
class GridEnvironment(gym.Env): 87

 metadata = { 'render.modes': [] } 88

 89

 def __init__(self,D,x,y, agent, goal): 90

 self.x=x 91

 self.y=y 92

 self.bool=D 93

 self.low = np.array([-3 * math.pi / 4, -math.pi / 2]) 94

 self.high = np.array([5 * math.pi / 4, math.pi / 2]) 95

 96

 self.observation_space = spaces.Box(self.low, self.hig97

h, dtype=np.float32) 98

 self.action_space = spaces.Discrete(4) 99

 self.max_timesteps = 25001 100

 self.agent=self.cord(agent) 101

 self.goal=self.cord(goal) 102

 103

 def reset(self): 104

 self.timestep = 0 105

 self.agent_pos = self.agent 106

 self.goal_pos = self.goal 107

 self.state = np.zeros((50,50)) 108

 self.state[tuple(self.agent_pos)] = 1 109

 self.state[tuple(self.goal_pos)] = 0.5 110

 111

 return self.agent_pos 112

 113

 def cord(self,pos): 114

 x=getcordinates(self.x, self.y, pos) 115

 return np.array(x) 116

 def obs(self): 117

 observation = self.state.flatten() 118

 return observation 119

 120

 def step(self, action): 121

 # 0 - down 122

 # 1 - up 123

 # 2 - right 124

 # 3 - left 125

 126

 s=False 127

 128

 if action == 0: 129

 if D[self.agent_pos[1],self.agent_pos[0]+1] and se130

lf.agent_pos[0]<48: 131

 132

 new=[self.agent_pos[0].copy() + 1,sel133

f.agent_pos[1]] 134

 135

 s=True 136

 137

 if action == 1: 138

 if D[self.agent_pos[1],self.agent_pos[0]-1] and se139

lf.agent_pos[0]>1: 140

 141

 new=[self.agent_pos[0].copy() - 1,sel142

f.agent_pos[1]] 143

 144

 s=True 145

 146

 if action == 2: 147

 if D[self.agent_pos[1]+1,self.agent_pos[0]] and se148

lf.agent_pos[1]<48: 149

 150

 new= [self.agent_pos[0],self.agent_po151

s[1].copy() + 1] 152

 s=True 153

 154

 if action == 3: 155

 if D[self.agent_pos[1]-1,self.agent_pos[0]] and se156

lf.agent_pos[1]>1: 157

 158

 new=[self.agent_pos[0],self.agent_pos159

[1].copy() - 1] 160

 s=True 161

 if s: 162

 new=np.array(new) 163

 else: 164

 new=self.agent_pos 165

 r = heuristic(new[0],new[1],self.goal_pos[0],self.goa166

l_pos[1]) 167

 if r<1: 168

 if r==0: 169

 reward=np.array([1000.0]) 170

 else: 171

 reward=np.array([500.0+1/r]) 172

 else: 173

 reward=np.array([20.0-r]) 174

 175

 self.agent_pos=new.copy() 176

 done = True if self.timestep >= self.max_timesteps els177

e False 178

 179

 180

 self.timestep += 1 181

 182

 info = {} 183

 if not s: 184

 reward= np.array([0.0]) 185

 self.state[tuple(new)] = 1 186

 187

 return new, reward, done, info 188

 189

 def render(self): 190

 plt.imshow(self.state) 191

 def pos(self,cor): 192

 self.agent_pos=cor 193

 def agent(self): 194

 return self.agent_pos 195

 196

3.2.1 Calculation of reward 197

Choice of reward function is very important since the performance of the algorithm will 198
depend on it. 199

The reward function is equal to twenty subtracted to the approximated distance. As the agent 200
gets closer to the goal it starts to increase. 201

In this case, when the agent reaches the goal(distance is 0) it gets 1000 reward. If the 202
distance is smaller than 1, it can get a reward between 500 and 500+1/(closest distance). 203
Performance still can be improved by changing the reward. 204

 205

3.2.2 Step function 206

Our environment contains obstacles. Therefore, an agent has to make sure that the next state 207
is “safe”. It is done via the configuration space matrix described above. It makes a decision 208
based on the value of free space matrix on a given position. 209

 210

4 Algorithms 211

 212

4 .1 Acto r -Cri t i c metho d 213

A synchronous, deterministic variant of Asynchronous Advantage Actor -Critic (A3C) 214
algorithm from the library of Stable Baseline was used. 215

 216

4 .2 Resul t s 217

Trajectory of the agent moving from start point = ([0, 0]) to goal point = ([0, 1 rad]) . There 218
is no obstacle between two points. Therefore, the trajectory looks like a straight line. 219
 220

 221
Fig ure 4 . Gr id b e fo re lea rn in g . Agen t p o s i t io n and go a l p o s i t io n . 222

 223

 224

 225

Figure 5. Grid after learning. Trajectory 226

Trajectory of the agent moving from start point = ([2, 0.5]) to goal point = ([3, -0.5]) was 227
estimated. There is an obstacle between two points. Therefore, the trajectory is more 228
complex. Learning was done for the environment with one obstacle with the following 229
configuration space 230

 231

Figure 6. New free&obstacle space 232

 233

 234

 235

Figure 7. Grid before learning. 236

 237
 238

 239

 240

Figure 8. Grid after learning.Trajectory 241

 242

 243

4 .3 Visua l i za t io n 244

 245
Fig ure 9 .T he i n i t i a l p o s i t io n o f a r o b o t 246

 247
Fig ure 1 0 . F ina l P o s i t i o n o f a r o b o t 248

 249

Figure 11. Whole trajectory 250

 251

5 Improvement 252

The algorithm does not always generate an optimal trajectory. It might be caused by a 253
complex environment or reward values. However, the agent often tries to move toward the 254
goal. Performance of the algorithm can be improved by choosing another reward 255
function(such as another type of heuristic function) 256

References 257

 [1] https://www.fanuc.eu/de/en/robots/robot-filter-page/scara-series/selection-support 258

[2] Volodymyr Mnih et.al (2016) Asynchronous Methods for Deep Reinforcement Learning 259
https://stable-baselines.readthedocs.io/en/master/modules/a2c.html 260

 261

https://www.fanuc.eu/de/en/robots/robot-filter-page/scara-series/selection-support
https://stable-baselines.readthedocs.io/en/master/modules/a2c.html

